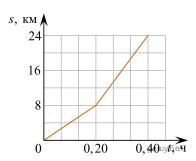
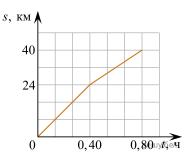

- **1.** Спортсмен, двигаясь прямолинейно, пробежал дистанцию длиной l=96 м, состоящую из двух участков, за промежуток времени $\Delta t=11$ с. На первом участке спортсмен разгонялся из состояния покоя и двигался равноускоренно в течение промежутка времени $\Delta t_1 = 6.0$ с. Если на втором участке спортсмен бежал равномерно, то модуль скорости υ спортсмена на финише равен ... $\frac{M}{c}$.
- 2. Чтобы забрать свой багаж в аэропорту, турист стал у начала багажной ленты, движущейся равномерно со скоростью, модуль которой $\upsilon_\pi=0,5\frac{\mathrm{M}}{\mathrm{C}}$. Спустя время $\tau=4$ c после появления багажа в начале ленты турист заметил свой багаж и начал догонять его, двигаясь равномерно. Если турист забрал багаж, пройдя вдоль ленты расстояние L=7 м, то модуль скорости υ_I туриста был равен ... $\frac{\mathrm{д}\mathrm{M}}{\mathrm{C}}$.
- 3. Турист ожидал свой багаж в аэропорту, стоя у начала равномерно движущейся багажной ленты. Спустя время t=2 с с после появления багажа в начале ленты турист заметил свой багаж и начал догонять его, двигаясь равномерно со скоростью, модуль которой $\upsilon_{\rm T}=1\frac{\rm M}{\rm c}$. Если турист догнал багаж, пройдя вдоль ленты расстояние L=8 м, то модуль скорости $\upsilon_{\rm J}$ ленты был равен ... $\frac{{\rm ZM}}{\rm c}$.
- **4.** Тележка движется по прямолинейной траектории. На рисунке представлен график зависимости модуля её перемещения Δr от времени t. Средняя скорость $\langle \upsilon \rangle$ пути тележки за промежуток времени от $t_1=0$ с до $t_1=50$ с равна ... $\frac{ZM}{C}$.

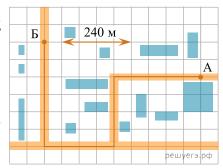


5. Тележка движется по прямолинейной траектории. На рисунке представлен график зависимости модуля её перемещения Δr от времени t. Средняя скорость $\langle \upsilon \rangle$ пути тележки за промежуток времени от $t_1=0$ с до $t_1=150$ с равна ... $\frac{\rm ZM}{\rm C}$.



6

На рисунке представлен график зависимости пути s от времени t движения автобуса на двух различных участках дороги. Средняя скорость $\mathfrak v$ движения автобуса на всём пути равна ... $\frac{\mathrm{KM}}{\mathrm{q}}$.



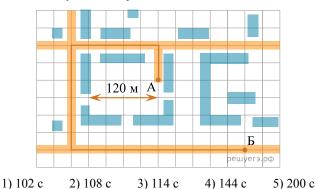
7. На рисунке представлен график зависимости пути s от времени t движения автобуса на двух различных участках дороги. Средняя скорость υ движения автобуса на всём пути равна ... $\frac{\mathrm{KM}}{\mathrm{Y}}$.

8. Если средняя путевая скорость движения автомобиля из пункта A в пункт \mathcal{S} $\langle \upsilon \rangle = 19,0$ км/ч (см.рис.), то автомобиль находился в пути в течение промежутка времени Δt равного:

 Π римечание: масштаб указан на карте.

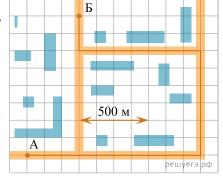
1) 128 c

2) 145 c


3) 162 c

4) 179 c

5) 216 c


9. Если средняя путевая скорость движения автомобиля из пункта A в пункт Б $\langle \upsilon \rangle = 23,0~{\rm KM/Y}$ (см.рис.), то автомобиль находился в пути в течение промежутка времени Δt равного:

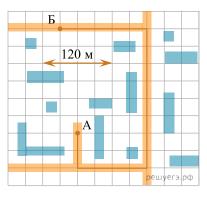
Примечание: масштаб указан на карте.

10. Если средняя путевая скорость движения автомобиля из пункта A в пункт B $\langle \upsilon \rangle = 37,5$ км/ч (см.рис.), то автомобиль находился в пути в течение промежутка времени Δt равного:

Примечание: масштаб указан на карте.

1) 150 c

2) 200 c


3) 300 c

4) 400 c

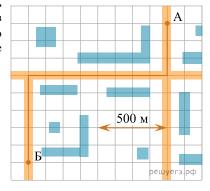
5) 450 c

11. Если средняя путевая скорость движения автомобиля из пункта A в пункт B $\langle \upsilon \rangle = 18,0$ км/ч (см.рис.), то автомобиль находился в пути в течение промежутка времени Δt равного:

Примечание: масштаб указан на карте.

1) 100 c

2) 114 c


3) 125 c

4) 144 c

5) 200 c

12. Если средняя путевая скорость движения автомобиля из пункта A в пункт B $\langle \upsilon \rangle = 16,0$ км/ч (см.рис.), то автомобиль находился в пути в течение промежутка времени Δt равного:

Примечание: масштаб указан на карте.

1) 150 c

2) 200 c

3) 300 c

4) 400 c

5) 450 c

13. Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $<v_1>=23$ км/ч, второй — $<v_2>=23$ км/ч, третий — $<v_3>=14$ км/ч, то всю трассу велосипедист проехал со средней скоростью $<v_3>=14$ км/ч, то всю трассу велосипедист проехал со средней скоростью $<v_3>=14$ км/ч, то всю трассу велосипедист проехал со средней скоростью $<v_3>=14$ км/ч.

1) 18 км/ч

2) 19 км/ч

3) 20 км/ч

4) 21 км/ч

5) 22 км/ч

14. Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $<v_1>=27$ км/ч, второй — $<v_2>=35$ км/ч, третий — $<v_3>=22$ км/ч, то всю трассу велосипедист проехал со средней скоростью $<v_2>=20$ пути , равной:

1) 25 км/ч

2) 26 км/ч

3) 27 км/ч

4) 28 км/ч

5) 29 км/ч

15. Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $<v_1>=33$ км/ч, второй — $<v_2>=38$ км/ч, третий — $<v_3>=25$ км/ч, то всю трассу велосипедист проехал со средней скоростью $<v_2>=38$ км/ч, третий — $<v_3>=38$ км/ч, то всю трассу велосипедист проехал со средней скоростью $<v_2>=38$ км/ч, травной:

1) 31 км/ч

2) 32 км/ч

3) 33 км/ч

4) 34 km/q

5) 35 км/ч

16. Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $<v_1>=30$ км/ч, второй — $<v_2>=33$ км/ч, третий — $<v_3>=15$ км/ч, то всю трассу велосипедист проехал со средней скоростью $<v_2>=15$ км/ч, травной:

1) 26 км/ч

2) 25 км/ч

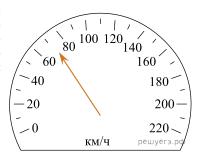
3) 24 км/ч

4) 23 km/q

5) 22 км/ч

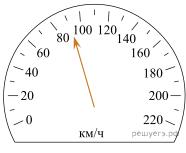
17. Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $<v_J>=38$ км/ч, второй — $<v_2>=50$ км/ч, третий — $<v_3>=53$ км/ч, то всю трассу велосипедист проехал со средней скоростью $<v_3>=50$ км/ч, травной:

1) 44 км/ч


2) 45 km/y

3) 46 км/ч

4) 47 км/ч


5) 48 км/ч

18. Во время испытания автомобиля водитель поддерживал постоянную скорость, значение которой указывает стрелка спидометра, изображённого на рисунке. Путь s=21 км автомобиль проехал за промежуток времени Δt , равный:

- 1) 14 мин
- 2) 18 мин
- 3) 22 мин
- 4) 26 мин
- 5) 30 мин

19. Во время испытания автомобиля водитель поддерживал постоянную скорость, значение которой указывает стрелка спидометра, изображённого на рисунке. Путь s=42 км автомобиль проехал за промежуток времени Δt , равный:

- 1) 16 мин
- 2) 19 мин
- 3) 22 мин
- 4) 25 мин
- 5) 28 мин